Gamma LAT: Reference Manual


pauli

ANSI-C program: pauli.c

NAME pauli - Calculate Pauli decomposition from HH, VV, and HV SLC images

SYNOPSIS

pauli <SLC_HH> <SLC_VV> <SLC_HV> <SLC_HH_par> <SLC_VV_par> <SLC_HV_par> <P>

<SLC-HH> (input) HH single-look complex image (scomplex or fcomplex format)
<SLC-VV> (input) VV single-look complex image (scomplex or fcomplex format)
<SLC-HV> (input) HV single-look complex image coregistered with SLC-1 (scomplex or fcomplex format)
<SLC_HH_par> (input) HH SLC image parameter file
<SLC_VV_par> (input) VV SLC image parameter file of SLC-2 coregistered with SLC-1
<SLC_HV_par> (input) HV SLC image parameter file  of SLC-3 coregistered with SLC-1
<P> (output) root file name of Pauli decomposition images: P_alpha.slc, P_beta.slc, P_gamma.slc (fcomplex format)
    alpha: (S_HH + S_VV)/sqrt(2.0)
    beta:   (S_HH - S_VV)/sqrt(2.0)
    gamma: sqrt(2.0)*S_HV

Note: SLC image parameter files are generated: P_alpha.slc.par, P_beta.slc.par, P_gamma.slc.par

EXAMPLE

pauli 20080409_HH.slc 20080409_VV.slc 20080409_HV.slc 20080409_HH.slc.par 20080409_VV.slc.par 20080409_HV.slc.par 20080409_HH_VV_HV

This calculates the Pauli decomposition and stores the 3 output components of decomposition in the files 20080409_HH_VV_HV_alpha.slc, 20080409_HH_VV_HV_beta.slc, 20080409_HH_VV_HV_gamma.slc. The associated SLC parameter files are 20080409_HH_VV_HV_alpha.slc.par, 20080409_HH_VV_HV_beta.slc.par, 20080409_HH_VV_HV_gamma.slc.par.

DESCRIPTION

Coherent polarimetric decompositions have the objective of describing the scattering matrix S as the sum of basis matrices corresponding to canonical scattering mechanisms [1][2]. The Pauli polarimetric decomposition for monostatic radar data is defined for each sample in a quad-pol SLC data set where HH, VV, and HV are the complex values of the different SLCs with the specified linear transmit and receive polarizations.

k = 1/sqrt(2) [HH+VV,   HH-VV,  2 HV]T

For example HV specifies the channel with horizontal transmit polarization and V, vertical receive polarization.   k is call the 3D Pauli feature vector.  By reciprocity, HV is equal to VH for monostatic data acquisitions, therefore only 3 terms are required.  Each of the terms of the Pauli decomposition has an associated elementary scattering mechanism. The three terms are defined as:

α =(HH + VV)/sqrt(2)

β = (HH - VV)/sqrt(2)

γ = sqrt(2)HV

The term α is associated with single-bounce scattering from a plane surface.  The second and third terms, β and γ, are from diplane scattering with the diplane oriented at  0 and 45 degrees respectively.

[1] Lee, J. S., Eric Pottier, "Polarimetric Radar Imaging: from Basics to Applications," Chapter 3, CRC Press, Boca Raton, 2008
[2] Lee, J. S., Eric Pottier, "Polarimetric Radar Imaging: from Basics to Applications," Chapter 6, CRC Press, Boca Raton, 2008

SEE ALSO
polcoh


© Copyrights for Documentation, Users Guide and Reference Manual by Gamma Remote Sensing, 2013.
UW, CW, MS last change 6-Jul-2013