ANSI-C program: pauli.c
NAME pauli - Calculate Pauli decomposition from HH, VV, and HV SLC images
SYNOPSIS
pauli <SLC_HH> <SLC_VV> <SLC_HV>
<SLC_HH_par> <SLC_VV_par> <SLC_HV_par> <P>
<SLC-HH> | (input) HH single-look complex image (scomplex or fcomplex format) |
<SLC-VV> | (input) VV single-look complex image (scomplex or fcomplex format) |
<SLC-HV> | (input) HV single-look complex image coregistered with SLC-1 (scomplex or fcomplex format) |
<SLC_HH_par> | (input) HH SLC image parameter file |
<SLC_VV_par> | (input) VV SLC image parameter file of SLC-2 coregistered with SLC-1 |
<SLC_HV_par> | (input) HV SLC image parameter file of SLC-3 coregistered with SLC-1 |
<P> | (output) root file name of Pauli decomposition images:
P_alpha.slc, P_beta.slc, P_gamma.slc (fcomplex format) alpha: (S_HH + S_VV)/sqrt(2.0) beta: (S_HH - S_VV)/sqrt(2.0) gamma: sqrt(2.0)*S_HV Note: SLC image parameter files are generated: P_alpha.slc.par, P_beta.slc.par, P_gamma.slc.par |
pauli 20080409_HH.slc 20080409_VV.slc 20080409_HV.slc
20080409_HH.slc.par 20080409_VV.slc.par 20080409_HV.slc.par
20080409_HH_VV_HV
20080409_HH_VV_HV_alpha.slc,
20080409_HH_VV_HV_beta.slc,
20080409_HH_VV_HV_gamma.slc.
The associated SLC
parameter files are
20080409_HH_VV_HV_alpha.slc.par,
20080409_HH_VV_HV_beta.slc.par,
20080409_HH_VV_HV_gamma.slc.par.
Coherent polarimetric decompositions have the objective of describing the scattering matrix S as the sum of basis matrices corresponding to canonical scattering mechanisms [1][2]. The Pauli polarimetric decomposition for monostatic radar data is defined for each sample in a quad-pol SLC data set where HH, VV, and HV are the complex values of the different SLCs with the specified linear transmit and receive polarizations.
k = 1/sqrt(2) [HH+VV, HH-VV, 2 HV]T
For example HV specifies the channel with horizontal transmit polarization and V, vertical receive polarization. k is call the 3D Pauli feature vector. By reciprocity, HV is equal to VH for monostatic data acquisitions, therefore only 3 terms are required. Each of the terms of the Pauli decomposition has an associated elementary scattering mechanism. The three terms are defined as:
(HH + VV)/sqrt(2)SEE ALSO
polcoh